
Applying Behavioral Detection on
Android-based Devices

Asaf Shabtai, Yuval Elovici

Department of Information Systems Engineering,
Deutsche Telekom Laboratories @ Ben-Gurion University,

Ben-Gurion University, Israel

Mobilware 2010

1

Outline

 Motivation

 Method and goals

 Evaluation

 Concussions

2

Motivation
Smart mobile devices security

 Smartphones have evolved into sophisticated, compact minicomputers

 A platform for running various applications

 Smartphones usage is on the raise (43%/year)*

 Stores sensitive/private information and services

 Susceptible to various PC-like types of attacks

 Open-platform; Open-source

*Forecast: Mobile Devices, Worldwide, 2003-2014, Gartner Inc.

3

Motivation
Smart mobile devices security

 The importance of security mechanisms is not yet understood

 Security mechanisms are not sufficient

 Antivirus – mostly signature-based

 Protecting functionalities (e.g., in Android)

 Jail-breaking devices

 Variety of platforms

4

Motivation
Smart mobile devices security

 Android security review*

 Vulnerability in one of the kernel modules or core libraries

 Application-level permissions mechanism

 Call, access contacts, geographical location, access the internet…

 adb install, “all or none”, applications can share permissions

*Shabtai, A. et al. Google Android: A Comprehensive Security Assessment. IEEE Security and Privacy, 8(2):35-44,
March/April 2010

5

Motivation
Smart mobile devices security

 According to SMobile Systems
“Threat Analysis of the Android Market”, June 2010

 48,694 applications in the Android Market, (68% of all applications in the Market)

 20% request permissions to access private or sensitive information

 5% has the ability to place a call or send SMS to any number

 Brick, read or use the authentication credentials from another service or application

 40% are suspicious because they request two or more of the permissions

6

Proposed method

 Part of an on-going research that we conduct for the past 2 years, focusing on
protecting smart mobile devices – specifically Android

 Intrusion detection, firewalls, malware detection, static code analysis, access control
(e.g., SELinux*), data leakage prevention

 Behavioral analysis on Android devices

 Extract various parameters from the system

 Apply machine learning algorithms to derive the device health

*Shabtai, A. Fledel, Y. Elovici, Y. Securing Android-Powered Mobile Devices Using SELinux. IEEE Security
and Privacy, 8(3):36-44, May/June 2010

7

Research goals

 Evaluate various detection algorithms

 Understanding the feasibility of running these methods on Android devices

 Detection capabilities

 Resource consumption

 What features are good for detection

 Evaluated the ability to differentiate between different types of applications (e.g.,
games and tools), which is expected to provide a positive indication about the
ability of such methods to learn and model the behavior applications and
potentially detect malware

8

Related works

 Anomaly detection focusing on detection of fraudulent use of operator services;
based on phone call features [Moreau, 1997], [Samfat, 1997]

 Battery/energy feature [Kim, 2008], [Buennemeyer, 2008], [Nash, 2005], [Jacoby,
2006], [Miettinen, 2006]

 [Schmidt, 2009] proposed monitoring smartphones for anomaly detection and
sending the features to remote server for analysis

 Signature-based detection [Yap, 2005], [Bose, 2008], [Kim, 2008], [Jacoby, 2006],
[Samfat, 1997]

 Keystroke dynamics [Hwang, 2009]

 Prevention by enhancing Android security at the application level permissions:
Kirin system [Enck, 2009] and SAINT [Ongtang, 2009]

 Static analysis/code verification ScanDroid [Adam, 2009]

9

The “Andromaly”

 A lightweight Host-based Intrusion Detection System for Android-based devices

 Providing real-time, monitoring, collection, preprocessing and analysis of various
system metrics

 Open framework – possible to apply different types of detection techniques
Shabtai, A. Kanonov, U. Elovici, Y. Intrusion Detection on Mobile Devices Using the Knowledge
Based Temporal-Abstraction Method. Journal of Systems and Software, 83(8):1524-1537, 2010

 Threat assessments (TAs) are weighted and smoothed to avoid instantaneous false
alarms

 An alert is matched against a set of automatic/manual countermeasures

 Log, notify, uninstall, kill process, disconnect radios, encrypt data, change firewall policies

10

The “Andromaly”

 Detection (or only reporting) at a centralized location

 Collaborative detection

 Detection of malware propagation patterns across a community of mobile devices

 Reporting suspicious behavior of applications to the Android Market

“The Android Market was chosen to be the place for reporting security issues by users”
(Google’s Android Security Leader, USENIX 2009)

11

The “Andromaly” architecture

12

Graphical User Interface

Feature
Manager

Loggers

Communication layer

Threat
Weighting Unit

Application Level

Operating System

Scheduling

Memory

Keyboard

Network

Hardware

Power

SQLite

Feature Extractors

Config
Manager

Operation Mode
Manager

Alert
Manager

Rule-based

Anomaly
Detector

Classifier

KBTA

Processors

Alert
Handler

Agent Service

Processor
Manager

Linux
Kernel

Application
Framework

Few screenshots…

13

Few screenshots…

14

Detection method
Learning phase

15

Detection method
Detection phase

16

Evaluation
Preparation of the data-sets

 The applications were installed on 5 Android G1devices (each device has one user
only)

 Each user activate each application for 10 minutes

 In the background the Android agent was running and logging data (feature
vectors) on the SD-card (88 features each 2 seconds)

 The feature vectors were added to our data-set and labeled with the device id,
application name and class (game/tool)

17

Evaluation
Collected features

18

Collected Features (88)

Touch screen:

Avg_Touch_Pressure

Avg_Touch_Area

Keyboard:

Avg_Key_Flight_Tim

e

Del_Key_Use_Rate

Avg_Trans_To_U

Avg_Trans_L_To_R

Avg_Trans_R_To_L

Avg_Key_Dwell_Tim

e

Keyboard_Opening

Keyboard_Closing

Scheduler:

Yield_Calls

Schedule_Calls

Schedule_Idle

Running_Jiffies

Waiting_Jiffies

CPU Load:

CPU_Usage

Load_Avg_1_min

Load_Avg_5_mins

Load_Avg_15_mins

Runnable_Entities

Total_Entities

Messaging:

Outgoing_SMS

Incoming_SMS

Outgoing_Non_CL_S

MS

Power:

Charging_Enabled

Battery_Voltage

Battery_Current

Battery_Temp

Battery_Level_Change

Battery_Level

Memory:

Garbage_Collections

Free_Pages

Inactive_Pages

Active_Pages

Anonymous_Pages

Mapped_Pages

File_Pages

Dirty_Pages

Writeback_Pages

DMA_Allocations

Page_Frees

Page_Activations

Page_Deactivations

Minor_Page_Faults

Application:

Package_Changing

Package_Restarting

Package_Addition

Package_Removal

Package_Restart

UID_Removal

Calls:

Incoming_Calls

Outgoing_Calls

Missed_Calls

Outgoing_Non_CL_C

alls

Operating System:

Running_Processes

Context_Switches

Processes_Created

Orientation_Changing

Network:

Local_TX_Packets

Local_TX_Bytes

Local_RX_Packets

Local_RX_Bytes

WiFi_TX_Packets

WiFi_TX_Bytes

WiFi_RX_Packets

WiFi_RX_Bytes

Hardware:

Camera

USB_State

Binder:

BC_Transaction

BC_Reply

BC_Acquire

BC_Release

Binder_Active_Nodes

Binder_Total_Nodes

Binder_Ref_Active

Binder_Ref_Total

Binder_Death_Active

Binder_Death_Total

Binder_Transaction_Active

Binder_Transaction_Total

Binder_Trns_Complete_Act

ive

Binder_Trns_Complete_Tot

al

Leds:

Button_Backlight

Keyboard_Backlight

LCD_Backlight

Blue_Led

Green_Led

Red_Led

Evaluation
Used applications

 23 games and 20 tools

19

 Application Device1 Device2 Device3 Device4 Device5

G
a

m
es

abduction 322 197 205 257 341

armageddonoid 343 222 198 264 326

battleformars 544 208 269 294 582

bonsai 355 287 267 253 304

breadfactory 300 208 241 246 291

connect4 308 204 225 249 289

flyinghigh 279 250 206 234 365

froggo 308 185 241 263 301

hangemhigh 342 348 274 255 339

labyrinthlite 317 297 244 252 324

lexic 354 266 222 273 347

minesweeper 342 267 249 285 541

mushroom 251 172 193 199 209

pairup 410 275 298 259 582

picacrossexpress 300 357 255 302 332

smarttactoe 298 233 254 262 300

snake 294 254 250 233 314

solitaire 334 378 281 288 439

switcher 303 231 269 236 395

tankace 336 287 250 262 330

throttlecopter 321 230 228 210 280

trap 454 245 189 251 398

wordpops 301 314 302 320 267

T
o

o
ls

browser 307 274 218 336 300

calculator 296 251 266 276 365

calendar 319 233 250 270 341

camera 302 251 249 260 294

contacts 303 230 218 256 680

email 219 250 445 275 339

im 371 245 238 251 385

iofilemanager 295 235 241 289 284

maps 342 216 245 278 429

messaging 322 247 255 278 296

music 304 251 272 256 343

mytracks 356 233 269 271 543

noteeverything 329 212 287 275 408

oxforddictionary 323 275 272 283 374

pdfviewer 280 249 248 263 319

phonalyzer 304 240 268 290 318

phone 125 224 140 110 244

tasks 300 226 250 263 302

voicememo 312 230 270 253 269

weather 372 242 272 269 297

Evaluation
Experiments

20

Tools (20) Games (23)Device i = 1,..,5

Train (80%)

Test (20%)

(a) Experiment I

... ...

Tools (20) Games (23)Device i = 1,..,5

Train (80%) Test (20%)Train (80%) Test (20%)

(b) Experiment II

...

Evaluation
Feature selection

 Large number of features present several problems

 Misleading the learning algorithm

 Causing over-fitting to the data and therefore reducing generalization capabilities

 Increasing complexity and run-time

 Three feature selection methods were applied to the data-set: Information Gain
(IG), Chi Square (CS), Fisher Score (FS)

 We chose for each feature selection the top: 10, 20 and 50 best features

21

Evaluation
Research questions

 Is it possible to detect unknown instances of known application types on Android
devices?

 Which classifier is most accurate in detecting malware on Android devices:
Decision Tree (DT), Naïve Bayes (NB), Bayesian Networks (BN), k-Means,
Histogram or Logistic Regression (LR)?

 Which number of extracted features and feature selection method yield the most
accurate detection results: 10, 20 or 50 top- features selected using Chi-Square,
Fisher Score or InfoGain?

 What are the specific features that yield the maximum detection accuracy?

22

Evaluation
Experiments

23

Exp. # of detection
algorithms

of feature
selection
methods

of top
feature
groups

of devices # of
iterations

Total number or
runs

Testing on
applications not

in training set
I 6 3 3 5 20 5,400 -

II 6 3 3 5 20 5,400 +

Tools (20) Games (23)Device i = 1,..,5

Train (80%)

Test (20%)

(a) Experiment I

... ...

Tools (20) Games (23)Device i = 1,..,5

Train (80%) Test (20%)Train (80%) Test (20%)

(b) Experiment II

...

Evaluation
Results - classifiers

 Best classifiers: Decision Tree, Logistic Regression and Bayesian Networks

 The five devices exhibited similar results

24

0.053

0.005

0.087

0.346

0.096

0.357

0.959 0.996

0.798

0.676

0.925

0.799

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

BN DT Histogram KMeans Logistic NB

Experiment I

Accuracy

FPR

0.188
0.233

0.159

0.398

0.208

0.414

0.775
0.739

0.679 0.674

0.806
0.757

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

BN DT Histogram KMeans Logistic NB

Experiment II

Accuracy

FPR

Evaluation
Results – feature selection

25

Exp Feature Selection Method
FPR Accuracy

10 20 50 10 20 50

I

ChiSquare 0.160 0.134 0.172 0.852 0.876 0.850

FisherScore 0.152 0.174 0.167 0.857 0.860 0.857

InfoGain 0.155 0.129 0.174 0.850 0.877 0.850

II

ChiSquare 0.270 0.258 0.280 0.732 0.751 0.725

FisherScore 0.250 0.263 0.268 0.750 0.750 0.735

InfoGain 0.265 0.263 0.282 0.729 0.747 0.724

Evaluation
Results – selected features

 Features were scored according to

 their rank assigned by feature selection methods

 number of devices that the feature was effective

 Highest scored features: Load_Avg_15_mins, Total_Entities, Running_Processes,
Mapped_Pages, Battery_Voltage, Context_Switches, Schedule_Calls,
Anonymous_Pages

26

0

1

2

3

4

5

6

7

8

9

10

Fe
a

tu
re

's
 s

co
re

Experiment I
FisherScore Top10

ChiScore Top10

InfoGain Top10

0

5

10

15

20

25

30

35

40

45

50

Fe
a

tu
re

's
 s

co
re

Experiment II
FisherScore Top10

ChiScore Top10

InfoGain Top10

Summary and conclusions

 The detection can be effective even when using a small number of features (20
features) and simple detection algorithms

 The five devices exhibit similar performance indicating that we can learn on a set of
devices and detect effectively even on other devices

 High similarity in the features that were selected on each of the experiments

 These observations strengthen the viability of the proposed method for malware
detection on mobile devices

27

Experiment Best Configuration TRP FPR AUC Accuracy

I DT\J48 InfoGain 20 0.997 0.004 0.998 0.997

II LR FisherScore 20 0.828 0.199 0.888 0.818

Future work

 Train on a set of devices and can detect on other devices

 Evaluation using emulated malware, and later using real malware

28

Tools (20) Games (23)

Train

Test

Device 1

Device 5

Experiment I

... ...

... ...

Device 4

...

Tools (20) Games (23)

Train

Test

Device 1

Device 5

Train Train

Test

Experiment II

...

Device 4

...

...

Test

Future work

 Remove features with high variance between different devices

 Additional feature (e.g., system calls)

 Add temporal perspective

 augmenting the collected features with a time stamp (change of the battery level in the
last 10min rather than the level of the battery at a certain point in time

 logging sequences of events (a Boolean feature that is true if there was an access to an
SD-card after an installation of application)

 Ensemble with additional detectors (rule-based, knowledge-based)

 Alert about a detected anomaly when it persists

 Focus on monitoring and detection of processes rather than monitoring the whole
system

29

Resources consumption

 Measured 30 features and applied 8 different classifiers that were launched
sequentially (i.e., one-by-one)

 The result shows an approx 10% performance degradation

 Feature Extractors are in the critical execution loop and must be optimized
aggressively

 implementing resource exhaustive feature extractors as native code

 sending only the required features to each processor to reduce the Binder
communication overhead

30

Thank you

31

