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Motivation
Smart mobile devices security

 Smartphones have evolved into sophisticated, compact minicomputers

 A platform for running various applications

 Smartphones usage is on the raise (43%/year)*

 Stores sensitive/private information and services

 Susceptible to various PC-like types of attacks

 Open-platform; Open-source

*Forecast: Mobile Devices, Worldwide, 2003-2014, Gartner Inc.
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Motivation
Smart mobile devices security

 The importance of security mechanisms is not yet understood

 Security mechanisms are not sufficient

 Antivirus – mostly signature-based

 Protecting functionalities (e.g., in Android)

 Jail-breaking devices

 Variety of platforms
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Motivation
Smart mobile devices security

 Android security review*

 Vulnerability in one of the kernel modules or core libraries

 Application-level permissions mechanism

 Call, access contacts, geographical location, access the internet…

 adb install, “all or none”, applications can share permissions

*Shabtai, A. et al. Google Android: A Comprehensive Security Assessment. IEEE Security and Privacy, 8(2):35-44, 
March/April 2010 
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Motivation
Smart mobile devices security

 According to SMobile Systems
“Threat Analysis of the Android Market”, June 2010

 48,694 applications in the Android Market, (68% of all applications in the Market)

 20% request permissions to access private or sensitive information

 5% has the ability to place a call or send SMS to any number

 Brick, read or use the authentication credentials from another service or application

 40% are suspicious because they request two or more of the permissions
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Proposed method

 Part of an on-going research that we conduct for the past 2 years, focusing on 
protecting smart mobile devices – specifically Android

 Intrusion detection, firewalls, malware detection, static code analysis, access control 
(e.g., SELinux*), data leakage prevention

 Behavioral analysis on Android devices

 Extract various parameters from the system

 Apply machine learning algorithms to derive the device health

*Shabtai, A. Fledel, Y. Elovici, Y. Securing Android-Powered Mobile Devices Using SELinux. IEEE Security 
and Privacy, 8(3):36-44, May/June 2010 
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Research goals

 Evaluate various detection algorithms

 Understanding the feasibility of running these methods on Android devices

 Detection capabilities

 Resource consumption

 What features are good for detection

 Evaluated the ability to differentiate between different types of applications (e.g., 
games and tools), which is expected to provide a positive indication about the 
ability of such methods to learn and model the behavior applications and 
potentially detect malware

8



Related works

 Anomaly detection focusing on detection of fraudulent use of operator services; 
based on phone call features [Moreau, 1997], [Samfat, 1997]

 Battery/energy feature [Kim, 2008], [ Buennemeyer, 2008], [Nash, 2005], [Jacoby, 
2006], [Miettinen, 2006]

 [Schmidt, 2009] proposed monitoring smartphones for anomaly detection and 
sending the features to remote server for analysis  

 Signature-based detection [Yap, 2005], [Bose, 2008], [Kim, 2008], [Jacoby, 2006], 
[Samfat, 1997]

 Keystroke dynamics [Hwang, 2009]

 Prevention by enhancing Android security at the application level permissions: 
Kirin system [Enck, 2009] and SAINT [Ongtang, 2009]

 Static analysis/code verification ScanDroid [Adam, 2009]
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The “Andromaly”

 A lightweight Host-based Intrusion Detection System for Android-based devices

 Providing real-time, monitoring, collection, preprocessing and analysis of various 
system metrics

 Open framework – possible to apply different types of detection techniques
Shabtai, A. Kanonov, U. Elovici, Y. Intrusion Detection on Mobile Devices Using the Knowledge 
Based Temporal-Abstraction Method. Journal of Systems and Software, 83(8):1524-1537, 2010

 Threat assessments (TAs) are weighted and smoothed to avoid instantaneous false 
alarms

 An alert is matched against a set of automatic/manual countermeasures

 Log, notify, uninstall, kill process, disconnect radios, encrypt data, change firewall policies
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The “Andromaly”

 Detection (or only reporting) at a centralized location

 Collaborative detection

 Detection of malware propagation patterns across a community of mobile devices

 Reporting suspicious behavior of applications to the Android Market

“The Android Market was chosen to be the place for reporting security issues by users” 
(Google’s Android Security Leader, USENIX 2009)
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The “Andromaly” architecture
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Few screenshots…
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Few screenshots…
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Detection method
Learning phase
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Detection method
Detection phase
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Evaluation
Preparation of the data-sets

 The applications were installed on 5 Android G1devices (each device has one user 
only)

 Each user activate each application for 10 minutes

 In the background the Android agent was running and logging data (feature 
vectors) on the SD-card (88 features each 2 seconds)

 The feature vectors were added to our data-set and labeled with the device id, 
application name and class (game/tool)
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Evaluation
Collected features
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Collected Features (88) 

Touch screen: 

Avg_Touch_Pressure 

Avg_Touch_Area 

Keyboard: 

Avg_Key_Flight_Tim

e 

Del_Key_Use_Rate 

Avg_Trans_To_U 

Avg_Trans_L_To_R 

Avg_Trans_R_To_L 

Avg_Key_Dwell_Tim

e 

Keyboard_Opening 

Keyboard_Closing 

Scheduler: 

Yield_Calls 

Schedule_Calls 

Schedule_Idle 

Running_Jiffies 

Waiting_Jiffies 

CPU Load: 

CPU_Usage 

Load_Avg_1_min 

Load_Avg_5_mins 

Load_Avg_15_mins 

Runnable_Entities 

Total_Entities 

Messaging: 

Outgoing_SMS 

Incoming_SMS 

Outgoing_Non_CL_S

MS 

Power: 

Charging_Enabled 

Battery_Voltage 

Battery_Current 

Battery_Temp 

Battery_Level_Change 

Battery_Level 

Memory: 

Garbage_Collections 

Free_Pages 

Inactive_Pages 

Active_Pages 

Anonymous_Pages 

Mapped_Pages 

File_Pages 

Dirty_Pages 

Writeback_Pages 

DMA_Allocations 

Page_Frees 

Page_Activations 

Page_Deactivations 

Minor_Page_Faults 

Application: 

Package_Changing 

Package_Restarting 

Package_Addition 

Package_Removal 

Package_Restart 

UID_Removal 

Calls: 

Incoming_Calls 

Outgoing_Calls 

Missed_Calls 

Outgoing_Non_CL_C

alls 

Operating System: 

Running_Processes 

Context_Switches 

Processes_Created 

Orientation_Changing 

 

Network: 

Local_TX_Packets 

Local_TX_Bytes 

Local_RX_Packets 

Local_RX_Bytes 

WiFi_TX_Packets 

WiFi_TX_Bytes 

WiFi_RX_Packets 

WiFi_RX_Bytes 

Hardware: 

Camera 

USB_State 

Binder: 

BC_Transaction 

BC_Reply 

BC_Acquire 

BC_Release 

Binder_Active_Nodes 

Binder_Total_Nodes 

Binder_Ref_Active 

Binder_Ref_Total 

Binder_Death_Active 

Binder_Death_Total 

Binder_Transaction_Active 

Binder_Transaction_Total 

Binder_Trns_Complete_Act

ive 

Binder_Trns_Complete_Tot

al 

Leds: 

Button_Backlight 

Keyboard_Backlight 

LCD_Backlight 

Blue_Led 

Green_Led 

Red_Led 

 



Evaluation
Used applications

 23 games and 20 tools
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 Application Device1 Device2 Device3 Device4 Device5 

G
a

m
es

 

abduction 322 197 205 257 341 

armageddonoid 343 222 198 264 326 

battleformars 544 208 269 294 582 

bonsai 355 287 267 253 304 

breadfactory 300 208 241 246 291 

connect4 308 204 225 249 289 

flyinghigh 279 250 206 234 365 

froggo 308 185 241 263 301 

hangemhigh 342 348 274 255 339 

labyrinthlite 317 297 244 252 324 

lexic 354 266 222 273 347 

minesweeper 342 267 249 285 541 

mushroom 251 172 193 199 209 

pairup 410 275 298 259 582 

picacrossexpress 300 357 255 302 332 

smarttactoe 298 233 254 262 300 

snake 294 254 250 233 314 

solitaire 334 378 281 288 439 

switcher 303 231 269 236 395 

tankace 336 287 250 262 330 

throttlecopter 321 230 228 210 280 

trap 454 245 189 251 398 

wordpops 301 314 302 320 267 

T
o

o
ls

 

browser 307 274 218 336 300 

calculator 296 251 266 276 365 

calendar 319 233 250 270 341 

camera 302 251 249 260 294 

contacts 303 230 218 256 680 

email 219 250 445 275 339 

im 371 245 238 251 385 

iofilemanager 295 235 241 289 284 

maps 342 216 245 278 429 

messaging 322 247 255 278 296 

music 304 251 272 256 343 

mytracks 356 233 269 271 543 

noteeverything 329 212 287 275 408 

oxforddictionary 323 275 272 283 374 

pdfviewer 280 249 248 263 319 

phonalyzer 304 240 268 290 318 

phone 125 224 140 110 244 

tasks 300 226 250 263 302 

voicememo 312 230 270 253 269 

weather 372 242 272 269 297 

 



Evaluation 
Experiments
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Tools (20) Games (23)Device i = 1,..,5

Train (80%)

Test (20%)

(a) Experiment I

... ...

Tools (20) Games (23)Device i = 1,..,5

Train (80%) Test (20%)Train (80%) Test (20%)

(b) Experiment II

... ... ... ...



Evaluation 
Feature selection

 Large number of features present several problems

 Misleading the learning algorithm

 Causing over-fitting to the data and therefore reducing generalization capabilities

 Increasing complexity and run-time

 Three feature selection methods were applied to the data-set: Information Gain 
(IG), Chi Square (CS), Fisher Score (FS)

 We chose for each feature selection the top: 10, 20 and 50 best features
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Evaluation 
Research questions

 Is it possible to detect unknown instances of known application types on Android 
devices?

 Which classifier is most accurate in detecting malware on Android devices: 
Decision Tree (DT), Naïve Bayes (NB), Bayesian Networks (BN), k-Means, 
Histogram or Logistic Regression (LR)?

 Which number of extracted features and feature selection method yield the most 
accurate detection results: 10, 20 or 50 top- features selected using Chi-Square, 
Fisher Score or InfoGain?

 What are the specific features that yield the maximum detection accuracy?
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Evaluation
Experiments
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Exp. # of detection 
algorithms

# of feature 
selection 
methods

# of top 
feature 
groups

# of devices # of 
iterations

Total number or 
runs

Testing on 
applications not 

in training set
I 6 3 3 5 20 5,400 -

II 6 3 3 5 20 5,400 +

Tools (20) Games (23)Device i = 1,..,5

Train (80%)

Test (20%)

(a) Experiment I

... ...

Tools (20) Games (23)Device i = 1,..,5

Train (80%) Test (20%)Train (80%) Test (20%)

(b) Experiment II

... ... ... ...



Evaluation
Results - classifiers

 Best classifiers: Decision Tree, Logistic Regression and Bayesian Networks

 The five devices exhibited similar results
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Evaluation
Results – feature selection

25

Exp Feature Selection Method 
FPR Accuracy 

10 20 50 10 20 50 

I 

ChiSquare 0.160 0.134 0.172 0.852 0.876 0.850 

FisherScore 0.152 0.174 0.167 0.857 0.860 0.857 

InfoGain 0.155 0.129 0.174 0.850 0.877 0.850 

II 

ChiSquare 0.270 0.258 0.280 0.732 0.751 0.725 

FisherScore 0.250 0.263 0.268 0.750 0.750 0.735 

InfoGain 0.265 0.263 0.282 0.729 0.747 0.724 

 



Evaluation
Results – selected features

 Features were scored according to

 their rank assigned by feature selection methods

 number of devices that the feature was effective

 Highest scored features: Load_Avg_15_mins, Total_Entities, Running_Processes, 
Mapped_Pages, Battery_Voltage, Context_Switches,  Schedule_Calls, 
Anonymous_Pages
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Summary and conclusions

 The detection can be effective even when using a small number of features (20 
features) and simple detection algorithms

 The five devices exhibit similar performance indicating that we can learn on a set of 
devices and detect effectively even on other devices

 High similarity in the features that were selected on each of the experiments

 These observations strengthen the viability of the proposed method for malware 
detection on mobile devices
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Experiment Best Configuration TRP FPR AUC Accuracy 

I DT\J48 InfoGain 20 0.997 0.004 0.998 0.997 

II LR FisherScore 20 0.828 0.199 0.888 0.818 

 



Future work

 Train on a set of devices and can detect on other devices

 Evaluation using emulated malware, and later using real malware
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Future work

 Remove features with high variance between different devices

 Additional feature (e.g., system calls)

 Add temporal perspective

 augmenting the collected features with a time stamp (change of the battery level in the 
last 10min rather than the level of the battery at a certain point in time

 logging sequences of events (a Boolean feature that is true if there was an access to an 
SD-card after an installation of application)

 Ensemble with additional detectors (rule-based, knowledge-based)

 Alert about a detected anomaly when it persists

 Focus on monitoring and detection of processes rather than monitoring the whole 
system
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Resources consumption

 Measured 30 features and applied 8 different classifiers that were launched 
sequentially (i.e., one-by-one)

 The result shows an approx 10% performance degradation

 Feature Extractors are in the critical execution loop and must be optimized 
aggressively

 implementing resource exhaustive feature extractors as native code

 sending only the required features to each processor to reduce the Binder 
communication overhead
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Thank you
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